1. 탐욕 알고리즘 (Greedy Algorithm)이란?

  • Greedy algorithm 또는 탐욕 알고리즘 이라고 불리움
  • 최적의 해에 가까운 값을 구하기 위해 사용됨
  • 여러 경우 중 하나를 결정해야할 때마다, 매순간 최적이라고 생각되는 경우를 선택하는 방식으로 진행해서, 최종적인 값을 구하는 방식

2. 탐욕 알고리즘 예

문제1 : 동전 문제

지불해야 하는 값이 4720원 일 때 1원, 50원, 100원, 500원 동전으로 동전의 수가 가장 적게 지불하시오.

  • 가장 큰 동전부터 최대한 지불해야 하는 값을 채우는 방식으로 구현 가능
  • 탐욕 알고리즘으로 매순간 최적이라고 생각되는 경우를 선택하면 됨

 

coin_list = [500, 100, 50, 1]

def min_coin_count(value, coin_list):
    total_coin_count = 0
    details = list() # 어떤 동전이 몇개 사용되나
    coin_list.sort(reverse=True) # 큰 순서대로 정렬하기
    
    for coin in coin_list:
        coin_num = value//coin # 코인 개수
        total_coin_count += coin_num
        value -= coin*coin_num  
        details.append([coin, coin_num]) # 무슨 동전이 몇개 추가되는지
    
    return total_coin_count, details

 

min_coin_count(4720, coin_list)

>> (31, [[500, 9], [100, 2], [50, 0], [1, 20]])

 


문제2 : 부분 배낭 문제 (Fractional Knapsack Problem)

 

무게 제한이 k인 배낭에 최대 가치를 가지도록 물건을 넣는 문제

  • 각 물건은 무게(w)와 가치(v)로 표현될 수 있음
  • 물건은 쪼갤 수 있으므로 물건의 일부분이 배낭에 넣어질 수 있음, 그래서 Fractional Knapsack Problem 으로 부름

    • Fractional Knapsack Problem 의 반대로 물건을 쪼개서 넣을 수 없는 배낭 문제도 존재함 (0/1 Knapsack Problem 으로 부름) 
data_list = [(10, 10), (15, 12), (20, 10), (25, 8), (30, 5)]

def get_max_value(data_list, capacity): # (물건리스트, 무게제한)
    # 가치/무게 = 효율
    data_list = sorted(data_list, key=lambda x:x[1]/x[0], reverse=True) 
    total_value = 0
    details = list()
    
    for data in data_list:
        if capacity - data[0] >= 0: 
            capacity -= data[0] # 그만큼 무게가 줄어든다.
            total_value += data[1] # 가치를 더해준다.
            details.append([data[0], data[1], 1])
        else:
            fraction = capacity / data[0] # 물건을 쪼갠다.
            total_value += data[1] * fraction # 그만큼의 가치를 더해준다.
            details.append([data[0], data[1], fraction])
            break # 다음 물건들은 볼 필요가 없으므로 break
    return total_value, details

 

get_max_value(data_list, 30)

>> (24.5, [[10, 10, 1], [15, 12, 1], [20, 10, 0.25]])

3. 탐욕 알고리즘의 한계

  • 탐욕 알고리즘은 근사치 추정에 활용
  • 반드시 최적의 해를 구할 수 있는 것은 아니기 때문
  • 매 순간최적의 해에 가까운 값을 구하는 방법 중의 하나임

  • '시작' 노드에서 시작해서 가장 작은 값을 찾아 leaf node 까지 가는 경로를 찾을 시에

    • Greedy 알고리즘 적용시 시작 -> 7 -> 12 를 선택하게 되므로 7 + 12 = 19 가 됨 
    • 하지만 실제 가장 작은 값은 시작 -> 10 -> 5 이며, 10 + 5 = 15 가 답

 

 

복사했습니다!